Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.12.08.570782

RESUMO

The SARS-CoV-2 BA.2.86 lineage, first identified in August 2023, is phylogenetically distinct from the currently circulating SARS-CoV-2 Omicron XBB lineages, including EG.5.1 and HK.3. Comparing to XBB and BA.2, BA.2.86 carries more than 30 mutations in the spike (S) protein, indicating a high potential for immune evasion. BA.2.86 has evolved and its descendant, JN.1 (BA.2.86.1.1), emerged in late 2023. JN.1 harbors S:L455S and three mutations in non-S proteins. S:L455S is a hallmark mutation of JN.1: we have recently shown that HK.3 and other "FLip" variants carry S:L455F, which contributes to increased transmissibility and immune escape ability compared to the parental EG.5.1 variant. Here, we investigated the virological properties of JN.1.

2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.11.02.565304

RESUMO

In late 2023, a lineage of SARS-CoV-2 emerged and was named the BA.2.86 variant. BA.2.86 is phylogenetically distinct from other Omicron sublineages identified so far, displaying an accumulation of over 30 amino acid mutations in its spike protein. Here, we performed multiscale investigations to reveal the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Experimental studies showed that four clinically-available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 is significantly lower than that of BA.2 in both in vitro cell cultures and in vivo, it is suggested that the attenuated pathogenicity of BA.2.86 is due to its decreased replication capacity.

3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.19.563209

RESUMO

In middle-late 2023, a sublineage of SARS-CoV-2 Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. Here, we performed multiscale investigations to reveal virological features of newly emerging EG.5.1 variant. Our phylogenetic-epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T, are critical to the increased viral fitness. Experimental investigations addressing the growth kinetics, sensitivity to clinically available antivirals, fusogenicity and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 is comparable to that of XBB.1.5. However, the cryo-electron microscopy reveals the structural difference between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible at least in our experimental setup. Our multiscale investigations provide the knowledge for understanding of the evolution trait of newly emerging pathogenic viruses in the human population.

4.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.06.09.544432

RESUMO

SARS-CoV-2 has the capacity to evolve mutations to escape vaccine-and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool. Here, we challenged rhesus macaques with SARS-CoV-2 Delta and simultaneously treated them with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment gave equivalent protection in upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 did not block the development of memory responses to Delta and did not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.


Assuntos
Síndrome Respiratória Aguda Grave
5.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.04.06.535883

RESUMO

At the end of March 2023, XBB.1.16, a SARS-CoV-2 omicron XBB subvariant, emerged and was detected in various countries. Compared to XBB.1.5, XBB.1.16 has two substitutions in the S protein: E180V is in the N-terminal domain, and T478K in the receptor-binding domain (RBD). We first show that XBB.1.16 had an effective reproductive number (Re) that was 1.27- and 1.17-fold higher than the parental XBB.1 and XBB.1.5, respectively, suggesting that XBB.1.16 will spread worldwide in the near future. In fact, the WHO classified XBB.1.16 as a variant under monitoring on March 30, 2023. Neutralization assays demonstrated the robust resistance of XBB.1.16 to breakthrough infection sera of BA.2 (18-fold versus B.1.1) and BA.5 (37-fold versus B.1.1). We then used six clinically-available monoclonal antibodies and showed that only sotrovimab exhibits antiviral activity against XBB subvariants, including XBB.1.16. Our results suggest that, similar to XBB.1 and XBB.1.5, XBB.1.16 is robustly resistant to a variety of anti-SARS-CoV-2 antibodies. Our multiscale investigations suggest that XBB.1.16 that XBB.1.16 has a greater growth advantage in the human population compared to XBB.1 and XBB.1.5, while the ability of XBB.1.16 to exhibit profound immune evasion is comparable to XBB.1 and XBB.1.5. The increased fitness of XBB.1.16 may be due to (1) different antigenicity than XBB.1.5; and/or (2) the mutations in the non-S viral protein(s) that may contribute to increased viral growth efficiency.


Assuntos
Dor Irruptiva
6.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524178

RESUMO

In 2022, we have elucidated the characteristics of a variety of newly emerging SARS-CoV-2 Omicron subvariants. At the end of 2022, the XBB.1.5 variant, an descendant of XBB.1 that acquired the S:F486P substitution, emerged and is rapidly spreading in the USA and is the latest variant of concern. Although the features of XBB.1.5 was already reported by another group as a preprint, we think multiple and independent evaluations important, and these reports are crucial for sustained global health. In this study, our epidemic dynamics analysis revealed that the relative effective reproduction number (Re) of XBB.1.5 is more than 1.2-fold greater than that of the parental XBB.1, and XBB.1.5 is outcompeting BQ.1.1, the predominant lineage in the USA as of December 2022. Our data suggest that XBB.1.5 will rapidly spread worldwide in the near future. Yeast surface display assay and pseudovirus assay respectively showed that the ACE2 binding affinity and infectivity of XBB.1.5 is 4.3-fold and 3.3-fold higher than those of XBB.1, respectively. Moreover, neutralization assay revealed that XBB.1.5 is robustly resistant to BA.2 breakthrough infection sera (41-fold versus B.1.1, 20-fold versus BA.2) and BA.5 breakthrough infection sera (32-fold versus B.1.1, 9.5-fold versus BA.5), respectively. Because the immune resistance of XBB.1.5 is comparable to that of XBB.1, our results suggest that XBB.1.5 is the most successful XBB lineage as of January 2023 by acquiring the S:F486P substitution to augment ACE2 binding affinity without losing remarkable immune resistance, which leads to greater transmissibility.


Assuntos
Dor Irruptiva
7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.27.521986

RESUMO

In late 2022, the SARS-CoV-2 Omicron subvariants have highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged by recombination of two co-circulating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022 around India. In vitro experiments revealed that XBB is the most profoundly resistant variant to BA.2/5 breakthrough infection sera ever and is more fusogenic than BA.2.75. Notably, the recombination breakpoint is located in the receptor-binding domain of spike, and each region of recombined spike conferred immune evasion and augmented fusogenicity to the XBB spike. Finally, the intrinsic pathogenicity of XBB in hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provided evidence suggesting that XBB is the first documented SARS-CoV-2 variant increasing its fitness through recombination rather than single mutations.

8.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.05.519085

RESUMO

In late 2022, although the SARS-CoV-2 Omicron subvariants have highly diversified, some lineages have convergently acquired amino acid substitutions at five critical residues in the spike protein. Here, we illuminated the evolutionary rules underlying the convergent evolution of Omicron subvariants and the properties of one of the latest lineages of concern, BQ.1.1. Our phylogenetic and epidemic dynamics analyses suggest that Omicron subvariants independently increased their viral fitness by acquiring the convergent substitutions. Particularly, BQ.1.1, which harbors all five convergent substitutions, shows the highest fitness among the viruses investigated. Neutralization assays show that BQ.1.1 is more resistant to breakthrough BA.2/5 infection sera than BA.5. The BQ.1.1 spike exhibits enhanced binding affinity to human ACE2 receptor and greater fusogenicity than the BA.5 spike. However, the pathogenicity of BQ.1.1 in hamsters is comparable to or even lower than that of BA.5. Our multiscale investigations provide insights into the evolutionary trajectory of Omicron subvariants.

9.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.07.503115

RESUMO

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Assuntos
Adenocarcinoma Bronquioloalveolar
10.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.05.26.493539

RESUMO

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.


Assuntos
Adenocarcinoma Bronquioloalveolar
11.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.04.03.486864

RESUMO

Recent studies have revealed the unique virological characteristics of Omicron, the newest SARS-CoV-2 variant of concern, such as pronounced resistance to vaccine-induced neutralizing antibodies, less efficient cleavage of the spike protein, and poor fusogenicity. However, it remains unclear which mutation(s) in the spike protein determine the virological characteristics of Omicron. Here, we show that the representative characteristics of the Omicron spike are determined by its receptor-binding domain. Interestingly, the molecular phylogenetic analysis revealed that the acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidate that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue in another protomer in the spike trimer, which confers the attenuated spike cleavage efficiency and fusogenicity of Omicron. Our data shed light on the evolutionary events underlying Omicron emergence at the molecular level.

12.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.03.27.485958

RESUMO

The elucidation of viral-receptor interactions and an understanding of virus-spreading mechanisms are of great importance, particularly in the era of pandemic. Indeed, advances in computational chemistry, synthetic biology, and protein engineering have allowed precise prediction and characterization of such interactions. Nevertheless, the hazards of the infectiousness of viruses, their rapid mutagenesis, and the need to study viral-receptor interactions in a complex in vivo setup, call for further developments. Here, we show the development of biocompatible genetically engineered extracellular vesicles (EVs) that display the receptor binding domain (RBD) of SARS-CoV-2 on their surface as coronavirus mimetics (EVsRBD). Loading EVsRBD with iron oxide nanoparticles makes them MRI-visible, and thus, allows mapping of the binding of RBD to ACE2 receptors non-invasively in live subjects. Importantly, the proposed mimetics can be easily modified to display the RBD of SARS-CoV-2mutants, namely Delta and Omicron, allowing rapid screening of newly raised variants of the virus. The proposed platform thus shows relevance and cruciality in the examination of quickly evolving pathogenic viruses in an adjustable, fast, and safe manner.

13.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.14.480335

RESUMO

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.


Assuntos
Infecções por Coronavirus
14.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.12.03.471045

RESUMO

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced. Omicron contains a total of 30 substitutions plus deletions and an insertion in Spike, far more than any previously reported variant. The mutations include those previously identified by In-vitro evolution to contribute to high-affinity binding to ACE2, including mutations Q498R and N501Y critical in forming additional interactions in the interface. Together with increased charge complementarity between the RBD and ACE2, these substantially increase affinity and potentially virus transmissibility through increased syncytia formation. Further mutations promote immune evasion. We have studied the binding of a large panel of potent monoclonal antibodies generated from early pandemic or Beta infected cases. Mutations in Omicron will likely compromise the binding of many of these and additionally, the binding of antibodies under commercial development, however residual binding should provide protection from severe disease.

15.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.05.24.445534

RESUMO

Much can be learned from 1.2 million sequences of SARS-CoV-2 generated during the last 15 months. Out of the overwhelming number of mutations sampled so far, only few rose to prominence in the viral population. Many of these emerged recently and independently in multiple lineages. Such a textbook example of convergent evolution at the molecular level is not only curiosity but a guide to uncover the basis for adaptive advantage behind these events. Focusing on the extent of the convergent evolution in the spike (S) protein, our report confirms that the most concerning SARS-CoV-2 lineages carry the heaviest burden of convergent S-protein mutations, suggesting their fundamental adaptive advantage. The great majority (21/25) of S-protein sites under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. We further show that among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favored. While the probed mutation space in the S protein covered all amino-acids reachable by single nucleotide changes, substitutions requiring two nucleotide changes or epistatic mutations of multiple-residues have only recently started to emerge. Unfortunately, despite their convergent emergence and physical association, most of these adaptive mutations and their combinations remain understudied. We aim to promote research of current variants which are currently understudied but may become important in the future.

16.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438288

RESUMO

During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic.

17.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-183310.v1

RESUMO

SARS-CoV-2 is continually evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2 resulted in the more contagious mutations, S477N, E484K, and N501Y, to be among the first selected, explaining the convergent evolution of the “European” (20E-EU1), “British” (501.V1),”South African” (501.V2), and Brazilian variants (501.V3). Plotting the binding affinity to ACE2 of all RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. For example, Q498R epistatic to N501Y. Nevertheless, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9Å Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


Assuntos
COVID-19
18.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.06.425392

RESUMO

SARS-CoV-2 is continually evolving, with more contagious mutations spreading rapidly. Using in vitro evolution to affinity maturate the receptor-binding domain (RBD) of the spike protein towards ACE2 resulted in the more contagious mutations, S477N, E484K, and N501Y, to be among the first selected, explaining the convergent evolution of the “European” (20E-EU1), “British” (501.V1),”South African” (501.V2), and ‘‘Brazilian” variants (501.V3). Plotting the binding affinity to ACE2 of all RBD mutations against their incidence in the population shows a strong correlation between the two. Further in vitro evolution enhancing binding by 600-fold provides guidelines towards potentially new evolving mutations with even higher infectivity. For example, Q498R epistatic to N501Y. Nevertheless, the high-affinity RBD is also an efficient drug, inhibiting SARS-CoV-2 infection. The 2.9Å Cryo-EM structure of the high-affinity complex, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA